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Abstract. Improving curricular materials and practices aimed at complex cognitive processes such as problem solving 
requires careful planning and useful tools for assessment. To illustrate the challenges of measuring a change in students’ 
problem solving in physics, we present the results of and a reflection on a pilot assessment of the effectiveness of 
computer problem-solving coaches[1] in a large (200+ student) section of an introductory physics course. 
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INTRODUCTION 

In any area of research, the most important 
measurements are often the most difficult. One 
example is investigating a complex cognitive activity 
such as problem solving in a classroom situation. 
There are four big challenges in making this 
measurement: (1) specifying the student behavior that 
signals progress; (2) designing an instrument with the 
precision and discrimination to measure that progress; 
(3) constructing an experiment that either measures, 
controls, or averages over the confounding factors 
influencing student performance; and (4) using a 
classroom situation in which improvement is neither 
blocked nor masked. 

Effective problem solving involves a constellation 
of cognitive processes that have been assessed in 
laboratory situations using, for example, think aloud 
interview techniques or classification tasks [2,3]. 
However, this complexity makes direct quantitative 
assessment difficult in an authentic situation. In a 
classroom setting any signal may well be buried in 
noise arising from the very nature of the educational 
process. In this paper, we discuss the four challenges 
listed above in the context of a pilot study conducted 
to assess the effectiveness of computerized problem-
solving coaches in a large section of an introductory 
physics course. 

Almost since the introduction of computers, there 
have been numerous attempts to use them to help 
students improve their problem solving skills. The 
coaches used in the experiment described below are 
web-based programs developed at the University of 
Minnesota designed to provide students with 
individualized guidance and feedback while giving 
them practice in the decision-making processes critical 
to competent problem solving. Each of the coaches, 

which are described in more detail elsewhere [1], helps 
students solve a single physics problem. 

STUDY 

In Fall 2011 we pilot-tested 35 prototype computer 
coaches delivered over the internet in one section (219 
students) of an introductory calculus-based mechanics 
class at the University of Minnesota to assess their 
usability and explore their educational impact. To set 
up a sample of coaching users and non-users, students 
were allowed to satisfy their homework requirement 
either by completing the computer coaches for a given 
topic, by submitting a correct answer to the same 
problems through WebAssign (www.webassign.net) 
within three attempts, or by a combination of the two 
methods. Student use of the coaches was monitored by 
recording their keystrokes. During the course, students 
took four written in-class tests, each with two free-
response context-rich problems to solve and a final 
exam with five more standard problems. We collected 
the students’ written solutions to these 13 problems. 

We also collected written problem solutions from 
another section of the same course taught during the 
same semester by a different professor. This class did 
not use computer coaches but did use Learning 
Assistants [4] to facilitate small group discussions 
during lectures. Both sections used the Cooperative 
Group Problem Solving pedagogy and had professors 
who emphasized the use of organized problem solving 
frameworks [5]. 

Assessment: Instruments And Strategy 

In addition to the written problem solutions and 
keystroke data, we also collected pre- and post-test 
scores on the Force Concept Inventory (FCI) [6], a 



math diagnostic test, and the Colorado Learning 
Attitudes about Science Survey (CLASS) [7], as well 
as scores on the problems as determined by the 
Teaching Assistants (TAs) as part of students’ grades. 

Students’ problem-solving was measured by 
applying a rubric to their written problem solutions. 
The rubric was developed and tested for reliability, 
validity, and utility at the University of Minnesota 
[8,9] and includes five categories: (1) representing 
problem information in a Useful Description (UD), (2) 
selecting appropriate physics principles (Physics 
Approach, or PA), (3) applying physics principles to 
the specific conditions in the problem (Specific 
Application of Physics or SAP), (4) using appropriate 
Mathematical Procedures (MP), and (5) the overall 
communication of an organized reasoning pattern 
(Logical Progression or LP). Each category is scored 
on scale of 0-5 (with 5 being the most expert-like), or 
N/A in cases where the category is not applicable. 

Two assessors, a PER graduate student and a 
faculty member with a PhD in PER each scored half of 
the students’ solutions using the rubric. To ensure 
inter-rater reliability, they first scored the same 10 
student solutions, comparing and discussing their 
ratings, then repeating the process until their 
agreement was at least 90% before discussion. This 
training process was repeated for each problem. 

As a test of the validity of the rubric, the simple 
sum of rubric scores from all five categories was 
compared to the grades assigned to the problems by 
the TAs for the course. It is important to note that the 
grading of the problems by the TAs was completely 
independent of the rubric scoring and that the criteria 
for each were not necessarily related. However, as one 
would hope, the correlation between the TA score and 
the summed rubric score was very high, ranging from 
0.82 to 0.85 for each problem. 

In contrast, the correlation between student’ FCI 
scores and the summed rubric scores is much weaker, 
approximately 0.25, indicating that the FCI and the 
rubric measure substantially different things. 

Two strategies were used to measure the effect of 
the computer coaches on student problem solving 
performance. The first was to be a comparison of two 
groups of students within a single section, those who 
used the coaches frequently and those who did not. 
This type of comparison controls for class 
environment by selecting students within a single 
class. However, it is sensitive to contamination 
between the two groups, especially in cases such as the 
one studied, in which much of the class is based on 
students working together to solve problems. Students 
from the two groups share their knowledge, 
diminishing any difference between them. 

The second strategy involved comparing two 
groups of students from different lecture sections, one 

using the coaches and the other not. In this case, the 
contamination problem is much smaller, but the 
classes have different professors, teaching assistants, 
environments, and possibly even different types of 
students due to scheduling constraints. 

Within And Between Class Comparisons 

Dividing the single section into students who used 
the coaches and those that did not proved to be 
difficult. Assigning a subset of students to use the 
coaches and prohibiting others from using them would 
generate animosity and is likely unethical. In a 
previous study, offering students up to $225 to use the 
coaches did not attract enough students to perform a 
study. In Fall 2011, where students could use the 
computer coaches to complete their homework, too 
many of the students chose to use the coaches to form 
a true “non-users” group. The average number of 
coaches completed by a student was 22 and the 
average number attempted was 28. Only 9% of the 
students completed fewer than 10 of the coaches. 
Nevertheless, we created two groups: the most 
frequent completers (FC) (47 students completing 30-
35 coaches) and the least frequent completers (LC) (47 
students completing 5-16 coaches). Some students 
reported that they used the coaches only until they 
could solve the problem on their own, then quit before 
completing the coach; these incomplete attempts were 
not counted for purposes of assigning students to the 
FC and LC groups. 

 

TABLE I. Differences in background variables between 
frequent (FC) and less-frequent (LC) completer groups. 
FCI, Math, and CLASS are pretest scores. 

Pre-
test  

FC LC 

Overall M F Overall M F 
N 47 24 23 47 41 6 
FCI 47% 58% 36% 67%  70% 41% 
Math 61%  65% 57% 68%  69% 60% 
CLASS  61%  62% 59% 67%  68% 61% 

 

As can be seen in Table I, the background 
measures of students in the FC and LC groups are 
different, particularly with respect to the FCI. FC 
students were 49% female while the LC students were 
only 13% female. The LC students also had higher 
scores on all pre-tests. We conclude that the students 
who self-selected into the FC group tended to be 
female and have less physics preparation. 

To try to control for differences in students, we 
created pretest-matched subgroups from the FC and 
LC groups. Although we obtained groups with nearly 
identical pretest scores as well as a closer match with 
regard to gender (5f, 19m in the FC group completing 
an average of 33 coaches; 3f, 21m in the LC group 



completing an average of 11 coaches), the statistical 
power of the measurement has been greatly reduced 
because of the smaller number of students.  

 

 

 

 

 

 
FIGURE 1.  Average scores of the matched FC and 
LC groups on each of the five rubric categories for 4 
quiz problems and 2 final exam problems (averaged 
together). Lines are included only to guide the eye. 
 

Figure 1 shows the average rubric scores for the 
matched FC and LC subgroups for all of the problems 
analyzed so far, including 1 problem on each of the 4 
in-class quizzes and 2 problems on the final exam.  

As shown in the graphs, students’ problem solving, 
to the extent measured by the rubric scores, do not 
show a monotonic trend over time (nor would one 
necessarily expect them to [10]) and there is no 
statistically significant difference between the FC and 
LC groups. On the first quiz, which occurred near the 
beginning of the course, the LC group had a higher 
rubric score in 4 out of 5 of the rubric categories. After 
the first quiz, the FC group scored higher on a majority 
of the problems in each category except for 

Mathematical Procedure, which was not a skill 
addressed by the coaches. This pattern, while 
suggestive, is not statistically significant.  

To reduce the learning contamination among 
students, 99 students from each of two different lecture 
sections of the same course taught during the same 
semester were selected to form two matched groups 
based on the FCI, Math and CLASS pre test scores. In 
the group from the class using the computer coaches, 
there were about an equal number of FC and LC 
students (28 FC, 30 LC), as well as 41 students from 
neither of those two groups in the sample. The gender 
ratio was nearly equal in two matched groups (27 
females in the group from the class using coaches and 
28 females in the group from the other class). Because 
the two classes used different quiz problems but the 
same final exam, comparisons were made only using 
the final exam. Based on the two problems analyzed so 
far, there are no significant differences between the 
two classes. 

REFLECTION 

Any useful measurement needs to meet the four 
challenges set forth at the beginning of this article. 
Meeting the first challenge, to specify the behaviors 
that constitute a measurement signal, currently relies 
on the literature that distinguishes expert from novice 
problem solving. Based on research in developing 
expertise from areas as diverse as reading and 
athletics, this is not expected to be a monotonic 
progression [10]. It is not even clear that the learning 
progression is continuous. For example, there might be 
qualitatively different stages of this development such 
as that which has been called competent problem 
solving [11]. In such hypothetical intermediate stages, 
students might exhibit behavior that, while different 
from novices, is not necessarily more closely aligned 
with experts. This challenge can be met by making 
comparisons over a long enough timescale to be 
insensitive to such stages. Reviewing previous work, 
that scale is likely to be longer than a semester [10,12] 
reducing the sensitivity of our study.  

The second challenge is to develop a measuring 
instrument. Measuring the state of a complex cognitive 
process in an authentic environment typically uses 
both qualitative and quantitative techniques combined 
in a rubric. This instrument needs to be sensitive to the 
development of a general problem solving process and 
not to specialized training for specific behaviors such 
as drawing a certain kind of diagram, doing 
mathematics in a certain way, or getting the right 
answer to a specific problem type. The rubric we have 
developed is intended to be pedagogy independent and 
relevant to multiple problem types and topics [8,9]. In 



small scale studies, the rubric was shown to be valid 
by scoring various types of expert and student 
solutions. Furthermore, assessments of students’ 
problem-solving skills from interviews while solving a 
problem correlated very strongly with the rubric 
assessment of their written solutions. However, the 
rubric was developed to distinguish between expert 
and novice problem solving and its scoring procedures 
may not be appropriate to track student problem 
solving progress over the timescale of this study. The 
rubric may have enough sensitivity if used over a 
timescale long enough for student behavior to become 
closer to that of experts, however. 

The third challenge is constructing an appropriate 
experimental study. Such a study might show progress 
within a single population of students receiving the 
treatment or it could be a comparison between two 
populations of students, a treatment group and a non-
treatment group. The former must directly address the 
issues of the fourth challenge. As described 
previously, samples within a class suffer from limited 
statistical power and are subject to contamination. 
Using more than one class addresses both of these 
issues. However having two classes, even when they 
are different sections of the same course taught during 
the same timeframe, brings in confounding parameters 
such as the effect of the professor and other 
instructors, the distribution of the student population, 
or the emphasis and structure of the class. In the case 
of our study, the two sections also had different 
midterm tests that made it difficult to compare 
students’ performances as a function of time. The 
noise introduced by these confounding parameters 
might be statistically controlled by comparing more 
than two classes with a correspondingly larger 
expenditure of analysis effort.  

The fourth challenge is to use classes that neither 
mask nor block the desired effect. For example, in 
order to measure a change in students’ problem 
solving skills, one must ask appropriate exam 
questions (traditional problems often don’t evoke the 
problem solving process) and reward students for 
using a strong problem solving process in their 
solution (grading cannot simply be based on the final 
answer nor on the appearance of specific artifacts in 
the solution such as a particular type of diagram). We 
believe these two challenges have been met in our 
experiment. However, when trying to measure the 
effect of a specific treatment (in our case, the use of 
computer coaches), any signal might be hidden by the 
simultaneous use of other problem solving pedagogies. 
For example, such masking was demonstrated in the 
case of conceptual learning where the combined use of 
individually effective pedagogies did not show a 
cumulative gain. [13] 

The study we have outlined above illustrates the 
statistical and procedural difficulty in achieving 
appropriate measurement discrimination in an 
environment with a high noise to signal ratio. 
Improvements in the assessment techniques are being 
explored, including increasing the timescale over 
which the measurements are made, refining the 
application of the rubric to increase its sensitivity, 
using different student samples with initial problem 
solving processes that have a wider range of rubric 
scores, and making measurements in classes that do 
not use a cooperative group problem solving 
pedagogy. It is also possible that this type of 
measurement may require a more discriminating 
instrument than the rubric employed.  In our particular 
case, it is also possible that the signal is very small or 
non-existent.   
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